2,890 research outputs found

    Feeding IC 342: The nuclear spiral of a starburst galaxy

    Get PDF
    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342

    Type-Logical Syntax

    Get PDF
    A novel logic-based framework for representing the syntax–semantics interface of natural language, applicable to a range of phenomena. In this book, Yusuke Kubota and Robert Levine propose a type-logical version of categorial grammar as a viable alternative model of natural language syntax and semantics. They show that this novel logic-based framework is applicable to a range of phenomena—especially in the domains of coordination and ellipsis—that have proven problematic for traditional approaches. The type-logical syntax the authors propose takes derivations of natural language sentences to be proofs in a particular kind of logic governing the way words and phrases are combined. This logic builds on and unifies two deductive systems from the tradition of categorial grammar; the resulting system, Hybrid Type-Logical Categorial Grammar (Hybrid TLCG) enables comprehensive approaches to coordination (gapping, dependent cluster coordination, and right-node raising) and ellipsis (VP ellipsis, pseudogapping, and extraction/ellipsis interaction). It captures a number of intricate patterns of interaction between scopal operators and seemingly incomplete constituents that are frequently found in these two empirical domains. Kubota and Levine show that the hybrid calculus underlying their framework incorporates key analytic ideas from competing approaches in the generative syntax literature to offer a unified and systematic treatment of data that have posed considerable difficulties for previous accounts. Their account demonstrates that logic is a powerful tool for analyzing the deeper principles underlying the syntax and semantics of natural language

    Papillary muscle traction in mitral valve prolapse: Quantitation by two-dimensional echocardiography

    Get PDF
    Previous angiographic observations in patients with mitral valve prolapse have suggested that superior leaflet displacement results in abnormal superior tension on the papillary muscle tips that causes their superior traction or displacement. It has further been postulated that such tension can potentially affect the mechanical and electrophysiologic function of the left ventricle. The purpose of this study was to confirm and quantitate this phenomenon noninvasively by using two-dimensional echocardiography to determine whether superior displacement of the papillary muscle tips occurs and its relation to the degree of mitral leaflet displacement.Directed echocardiographic examination of the papillary muscles and mitral anulus was carried out in a series of patients with classic mitral valve prolapse and results were compared with those in a group of normal control subjects. Distance from the anulus to the papillary muscle tip was measured both in early and at peak ventricular systole. In normal subjects, this distance did not change significantly through systole, whereas in the patient group it decreased, corresponding to a superior displacement of the papillary muscle tips toward the anulus in systole (8.5 ± 2.6 vs. 0.8 ± 0.7 mm; p < 0.0001). This superior papillary muscle motion paralleled the superior displacement of the leaflets in individual patients (y = l.0x + 0.8; r = 0.93) and followed a similar time course. The systolic motion of the mitral anulus toward the apex, assessed with respect to a fixed external reference, was not significantly different in the patients and control groups (14.3 ± 4 vs. 15.5 ± 4.4 mm; p = 0.4) and therefore could not explain the superior papillary muscle tip motion relative to the anulus in the patients with mitral valve prolapse.These results demonstrate that normal mechanisms maintain a relatively constant distance between the papillary muscle tips and the mitral anulus during systole. In classic mitral valve prolapse, superior leaflet displacement is paralleled by superior displacement of the papillary muscles that is consistent with superiorly directed forces causing their traction. Two-dimensional echocardiography can therefore be used to measure these relations and test hypotheses as to their clinical correlates in patients with mitral valve prolapse

    An Extended and More Sensitive Search for Periodicities in RXTE/ASM X-ray Light Curves

    Full text link
    We present the results of a systematic search in approximately 14 years of Rossi X-ray Timing Explorer All-Sky Monitor data for evidence of periodicities not reported by Wen et al. (2006). Two variations of the commonly used Fourier analysis search method have been employed to achieve significant improvements in sensitivity. The use of these methods and the accumulation of additional data have resulted in the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al.Comment: 20 pages, 22 figures, in emulateapj format; submitted to ApJ

    Simultaneous Exoplanet Characterization and deep wide-field imaging with a diffractive pupil telescope

    Full text link
    High-precision astrometry can identify exoplanets and measure their orbits and masses, while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-microarcsecond accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.Comment: 15 pages, 6 figures. This second paper, following the paper describing the diffractive pupil telescope (DPT) astrometric technique, shows how simultaneous astrometry and coronagraphy observations, enabled by the DPT concept, constrain the orbital parameters and mass of exoplanet

    Automated flow rate calculation based on digital analysis of flow convergence proximal to regurgitant orifice

    Get PDF
    AbstractObjectives. The purpose of the study was to develop and validate an automated method for calculating regurgitant flow rate using color Doppler echocardiography.Background. The proximal flow convergence method is a promising approach to quantitate valvular regurgitation noninvasively because it allows one to calculate regurgitant flow rate and regurgitant orifice area; however, defining the location of the regurgitant orifice is often difficult and can lead to significant error in the calculated flow rates. To overcome this problem we developed an automated algorithm to locate the orifice and calculate flow rate based on the digital Doppler velocity map.Methods. This algorithm compares the observed velocities with the anticipated relative velocities, cos ϑ/μt2. The orifice is localized as the point with maximal correlation between predicted and observed velocity, whereas flow rate is specified as the slope of the regression line. We validated this algorithm in an in vitro model for flow through circular orifices with planar surroundings and a porcine bioprosthesis.Results. For flow through circular orifices, flow rates calculated on individual Doppler maps and on an average of eight velocity maps showed excellent agreement with true flow, with r = 0.977 and ΔQ = −3.7 ± 15.8 cm3/s and r = 0.991 and ΔQ = −4.3 ± 8.5 cm3/s, respectively. Calculated flow rates through the bioprosthesis correlated well but underestimated true flow, with r = 0.97, ΔQ = −10.9 ± 12.5 cm3/s, suggesting flow convergence over an >2π. This systematic underestimation was corrected by assuming an effective convergence angle of 212 δ.Conclusions. This algorithm accurately locates the regurgitant orifice and calculates regurgitant flow rate for circular orifices with planar surroundings. Automated analysis of the proximal flow field is also applicable to more physiologic surfaces surrounding the regurgitant orifice; however, the convergence angle should be adjusted. This automated algorithm should make quantification of regurgitant flow rate and regurgitant orifice area more reproducible and readily available in clinical cardiology practice

    Design of the ARES Mars Airplane and Mission Architecture

    Get PDF
    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project
    • …
    corecore